In vivo cells (hyphal bodies) of the hyphomycetous insect pathogen Beauveria bassiana collected from host Spodoptera exigua larval hemolymph were osmotically sensitive and lacked a well-defined cell wall. In light and electron microscope studies, a galactose-specific lectin purified from S. exigua hemolymph, concanavalin A (specific for alpha-mannose), and a polyclonal antibody to B. bassiana cell walls all bound to surfaces of in vitro-produced B. bassiana blastospores; however, none of these probes labelled the thin layer of extracellular material covering the plasma membranes of hyphal bodies. These cells were observed freely circulating in S. exigua hemolymph at 36 h postinfection, although immunocompetent hemocytes were known to be present. Additionally, association of hyphal bodies with hemocytes in monolayers was significantly less than for opsonized in vitro blastospores or submerged conidia. The absence of antigenically important galactomannan components on in vivo cells may therefore allow these cells to escape recognition and phagocytosis. Lack of structural components (e.g., chitin, as evidenced by the absence of binding of wheat germ agglutinin) may also be important with respect to evasion of host cellular defense mechanisms. Production of wall material resumed 48 to 60 h postinfection and therefore may coincide with loss of phagocytic capabilities of the hemocytes due to immunosuppressive effects of fungal metabolites. The protoplast-like cells may be formed by the action of hydrolytic enzymes in the hemocytes or by inhibition of fungal cell wall synthetases.