A novel method was developed to prepare three-dimensional structures with desired shapes used as templates for cell transplantation. The produced biomaterials are highly porous with large surface/volume and provide the necessary space for attachment and proliferation of the transplanted cells. The processing technique calls for the formation of a composite material with nonbonded fibers embedded in a matrix followed by thermal treatment and the selective dissolution of the matrix. To evaluate the technique, poly(glycolic acid) (PGA) fiber meshes were bonded using poly(L-lactic acid) (PLLA) as a matrix. The bonded structures were highly porous with values of porosity up to 0.81 and area/volume ratios as high as 0.05 micron-1.