Defective insulin action in fibroblasts from noninsulin-dependent diabetes mellitus patients with Gln1152 insulin receptor mutation

J Clin Endocrinol Metab. 1993 Aug;77(2):409-12. doi: 10.1210/jcem.77.2.8393885.

Abstract

Insulin action was investigated in cultured skin fibroblasts from two consanguineous patients with a heterozygous point mutation in the insulin receptor kinase (Arg1152-Gln). In spite of normal binding, Gln1152 insulin receptor exhibited 20% increased basal kinase activity, but significantly reduced insulin-dependent autophosphorylation and kinase activity compared to controls from either weight-matched noninsulin-dependent diabetic patients (n = 4) or normal subjects (n = 5). In fibroblasts from the mutant patients, basal alpha-aminoisobutyric acid and 2-deoxyglucose (2-DG) uptake, cytochalasin-B (CB) plasma membrane binding, and glycogen synthase activity were increased to levels similar to those in maximally insulin-stimulated control cells. No insulin stimulation of these metabolic effects was detected in the mutant cells. In spite of the high basal 2-DG uptake and CB binding and the lack of further insulin response, fibroblasts from the mutant patients responded to 12-O-tetradecanoylphorbol-13-acetate with a further 50% increase in 2-DG uptake and CB binding. The magnitude of the effects of insulin and 12-O-tetradecanoylphorbol-13-acetate in control cells were nearly identical. We conclude that the Gln1152 insulin receptor impairs insulin regulation of metabolic responses in patient cells. Its presence in fibroblasts from the mutant patients appears to be accompanied by an increased pool of glucose transporters.

MeSH terms

  • Adult
  • Aminobutyrates / metabolism
  • Cells, Cultured
  • Cytochalasin B / metabolism
  • Deoxyglucose / metabolism
  • Diabetes Mellitus, Type 2 / drug therapy
  • Diabetes Mellitus, Type 2 / physiopathology*
  • Female
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism
  • Glucose / metabolism
  • Glutamine*
  • Glycogen Synthase / biosynthesis
  • Glycogen Synthase / genetics
  • Humans
  • Insulin / pharmacology*
  • Insulin / therapeutic use
  • Male
  • Middle Aged
  • Phosphorylation / drug effects
  • Phosphotransferases / biosynthesis
  • Phosphotransferases / genetics
  • Point Mutation
  • Receptor, Insulin / genetics*
  • Receptor, Insulin / metabolism
  • Tetradecanoylphorbol Acetate / pharmacology

Substances

  • Aminobutyrates
  • Insulin
  • Glutamine
  • Cytochalasin B
  • alpha-aminobutyric acid
  • Deoxyglucose
  • Glycogen Synthase
  • Phosphotransferases
  • Receptor, Insulin
  • Glucose
  • Tetradecanoylphorbol Acetate