Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation.