Cochlear pathology following reimplantation of a multichannel scala tympani electrode array in the macaque

Am J Otol. 1995 Mar;16(2):186-99.

Abstract

The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Basilar Membrane / pathology
  • Bone Development
  • Cell Count
  • Cochlea / pathology*
  • Cochlear Implants*
  • Hair Cells, Auditory / pathology
  • Hearing Loss, High-Frequency / surgery
  • Macaca fascicularis
  • Reoperation
  • Spiral Ganglion / pathology
  • Temporal Bone / pathology
  • Temporal Bone / physiology