Human monoclonal T lymphocyte populations maintained in long-term culture by intermittent reactivation via the antigen receptor and supplied with exogenous interleukin 2 manifest finite proliferative lifespans. T lymphocytes cloned from mature peripheral T cells of adult donors were constantly lost from the time point of their first isolation up to an estimated maximum of 80 population doublings (PD) for the longest lived. T lymphocytes cloned from T cell progenitors in bone marrow, on the other hand, survived for a maximum of ca. 100 PD. One facet of the functional capacity of cells derived from these two different sources was assessed by measuring their autocrine proliferation after mitogenic stimulation. For a majority of T cell clones (TCC), autocrine proliferative capacity decreased as a function of culture age, becoming absent by 50 PD for adult-derived-TCC and by 70 PD for bone marrow-derived TCC, thereby clearly occurring prior to the end of the proliferative life spans of the clones. Limiting dilution frequency analysis showed that the number of autocrine proliferative precursors within these monoclonal populations declined with age, paralleling loss of autocrine proliferative capacity in the 'bulk' clones. Of a variety of surface structures monitored during culture ageing of TCC, the density of expression of the coreceptor molecule CD28 was found to correlate with decreasing autocrine proliferative capacity in two-thirds of the clones. Thus, at least for a fraction of monoclonal human T lymphocytes, decreasing autocrine proliferative capacity, a measure of clonal expansion, may correlate with decreasing numbers of CD28 molecules expressed on the surface and therefore presumably with the strength of costimulatory signal delivered via this important coreceptor.