We have previously shown that experimentally induced blood pressure changes modify the release rates of catecholamines in the hypothalamus and the locus coeruleus. The aim of the present investigation was to identify the peripheral baroreceptors and the centripetal pathways responsible for the changes of catecholamine release in these brain areas. In anaesthetized cats, push-pull cannulae were bilaterally inserted into the locus coeruleus and the posterior hypothalamus. The two brain areas were superfused simultaneously with artificial cerebrospinal fluid. Baroreceptor activation by phenylephrine-induced blood pressure elevation decreased the release rate of noradrenaline in the locus coeruleus and the release rates of noradrenaline and dopamine in the posterior hypothalamus. Similar effects were elicited by electrical stimulation of the central trunk of the transected vagus and aortic depressor nerves (vagus-ADN). Transection of the nerves abolished the effect of phenylephrine on the release of noradrenaline in the locus coeruleus. Nerve transections attenuated slightly the decreased release of noradrenaline elicited by phenylephrine in the posterior hypothalamus, while the reduced dopamine release rate was not influenced. The selective stimulation of baroreceptors in the carotid sinus by an inflatable catheter did not influence the release of catecholamines in the locus coeruleus, while release rates of noradrenaline and dopamine in the posterior hypothalamus were decreased. The simultaneous superfusion of locus coeruleus and hypothalamus revealed that, in both areas, noradrenaline release is inhibited by baroreceptor activation. Noradrenergic neurons of the posterior hypothalamus are inhibited by baroreceptor impulses conducted by the carotid sinus nerve and vagus-ADN, while the noradrenergic neurons of the locus coeruleus seem to respond to impulses transmitted by vagus-ADN.(ABSTRACT TRUNCATED AT 250 WORDS)