The catecholamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is used to augment striatal dopamine (DA), although its mechanism of altering neurotransmission is not well understood. We observed the effects of L-DOPA on catecholamine release in ventral midbrain neuron and PC12 pheochromocytoma cell line cultures. In ventral midbrain neuron cultures exposed to 40 mM potassium-containing media, L-DOPA (100 microM for 1 h) increased DA release by > 10-fold. The elevated extracellular DA levels were not significantly blocked by the DA/norepinephrine transport inhibitor nomifensine, demonstrating that reverse transport through catecholamine-uptake carriers plays little role in this release. In PC12 cells, where DA release from individual secretory vesicles can be observed, L-DOPA (50 microM for 1 h) elevated DA release in high-potassium media by 370%. Amperometric measurements demonstrated that L-DOPA (50 microM for 40-70 min) did not raise the frequency of vesicular exocytosis but increased the average size of quantal release to at least 250% of control levels. Together, these findings suggest that L-DOPA can increase stimulation-dependent transmitter release from DA cells by augmenting cytosolic neurotransmitter, leading to increased quantal size.