Acute treatment with pulsed electromagnetic fields and its effect on fast axonal transport in normal and regenerating nerve

J Neurosci Res. 1995 Dec;42(5):692-9. doi: 10.1002/jnr.490420512.

Abstract

The mechanism whereby low-frequency electromagnetic fields accelerate axonal regrowth and regeneration of peripheral nerve after crush lesion is not known. One candidate is an alteration in axonal transport. In this study we exposed unoperated rats for 15 min/day, and rats that had undergone a crush lesion of the sciatic nerve, for 1 hr/day for 2 days, to 2-Hz pulsed electromagnetic fields. To label fast transported proteins, [3H]-proline was microinjected into the spinal cord, and the sciatic nerves were removed 2, 3.5, and 5 hr later. The rates of fast axonal transport were obtained for animals in all groups by counting sequential 2-mm segments of nerves. The following transport rates were found: in unoperated normal sciatic nerve not exposed to PEMF, 373 +/- 14 mm/day; in unoperated normal nerve exposed to PEMF, 383 +/- 14 mm/day; in sham crush nerves not exposed to PEMF, 379 +/- 19 mm/day; in sham crush nerve exposed to PEMF, 385 +/- 17 mm/day; in crushed nerves not exposed to PEMF, 393 +/- 16 mm/day. and in crushed nerves exposed to PEMF, 392 +/- 15 mm/day. The results of these experiments indicate that 1) a crush injury to the sciatic nerve does not alter the rate of fast axonal transport, and 2) low-frequency pulsed electromagnetic fields do not alter fast axonal transport rates in operated (crush) or unoperated sciatic nerves.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axonal Transport / physiology*
  • Electromagnetic Fields*
  • Male
  • Nerve Crush
  • Nerve Regeneration / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Sciatic Nerve / anatomy & histology
  • Sciatic Nerve / physiology*