sgk is a novel member of the serine/threonine protein kinase gene family that is transcriptionally regulated by serum and glucocorticoids in mammary epithelial cells. To functionally determine if the sgk promoter is regulated by the p53 tumor suppressor protein in mammary cells, a series of sgk promoter fragments with 5'-deletions were linked to the bacterial chloramphenicol acetyltransferase gene (sgk-CAT) and transiently co-transfected into nontumorigenic NMuMG or transformed Con8Hd6 mammary epithelial cells with p53 expression plasmids. Wild-type p53, but not mutant p53, strongly stimulated sgk promoter activity in both mammary epithelial cell lines. These effects were mediated by specific regions within the sgk promoter containing p53 DNA-binding sites. The sgk p53 sequence at-1380 to-1345 (site IV) was sufficient to confer p53-dependent transactivation to a heterologous promoter, and p53 was capable of binding to this sequence in vitro as assessed by gel shift analysis. In the nontumorigenic NMuMG epithelial cell line, cotransfection of wild-type p53 strongly stimulated the activities of both the sgk promoter and the well characterized p53-responsive p21/Waf1 promoter, whereas in Rat-2 fibroblasts, wild-type p53 repressed the basal activities of both promoters, revealing that sgk and p21/Waf1 are similarly regulated in a cell type-specific manner. Taken together, these results demonstrate that sgk is a new transcriptional target of p53 in mammary epithelial cells and represent the first example of a hormone-regulated protein kinase gene with a functionally defined p53 promoter recognition element.