One of the functions of N-linked glycans of viral glycoproteins is protecting otherwise accessible neutralization epitopes of the viral envelope from neutralizing antibodies. The aim of the present study was to explore the possibility to obtain a more broadly neutralizing immune response by immunizing guinea pigs with gp160 depleted of three N-linked glycans in the CD4-binding domain by site-directed mutagenesis. Mutant and wild type gp160 were formulated into immunostimulating complexes and injected s.c. into guinea pigs. Both preparations induced high serum antibody response to native gp120 and V3 peptides. Both preparations also induced antibodies that bound equally well to the V3 loop or the CD4-binding region, as determined by a competitive enzyme-linked immunosorbent assay (ELISA). The sera from animals, immunized with mutated glycoprotein, did not neutralize nonrelated HIV strains better than did sera from animals, immunized with wild type glycoprotein. Instead, a pattern of preferred homologous neutralization was observed, i.e., sera from animals, immunized with mutant gp160, neutralized mutant virus better than wild type virus, and vice versa. These data indicated that elimination of the three N-linked glycans from gp160 resulted in an altered local antigenic conformation but did not uncover hidden neutralization epitopes, broadening the immune response.