Background: Early photorefractive keratectomy ablations were of limited diameter and depth to maintain the integrity of the globe and to minimise postoperative haze. This study evaluated the effects of deeper, larger diameter wounds on refractive stability and corneal haze, and investigated the effects of ablation profile on wound healing and visual performance.
Methods: One hundred patients undergoing -3.00D and -6.00D corrections were randomised to receive 5 mm, 6 mm, or multizone treatments. The multizone treatment was 6 mm in diameter, but only the depth of the 5 mm treatment. Outcome was measured by Snellen visual acuity, residual refractive error, objective techniques for haze and halos, pupil diameter, subjective night vision, and requirement for retreatment.
Results: Overall, the results of 6 mm treatments were superior to those of 5 mm and multizone treatments: they had a smaller hyperopic shift (p < 0.01), a more predictable (p < 0.001) and stable refractive outcome, less haze (p < 0.05), smaller halos (p < 0.05), fewer subjective night vision problems, and fewer patients required retreatment.
Conclusions: Analysis of these data and a literature review of corneal wound healing demonstrated that the improved outcome associated with the 6 mm beam did not relate to the depth of ablation. The factor with greatest apparent influence on the development of haze and regression was the slope of the wound surface over the entire area of the ablation. Tapering the wound edge provided no additional benefit, and contributed to night vision problems. It is, therefore, recommended that small diameter or multizone treatments should not be used in low and moderate myopia.