Specific binding of Nicotiana nuclear protein(s) to subterminal regions of the Ac transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions of Ac, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends of Mutator. Moreover, we show that DNA from Ds1 competes for protein binding to Ac termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region of Tgm1, Tpn1, En/Spm, Tam3, and Ds1-like elements. This suggests that the binding protein(s) might be involved in the transposition process.