Objective: The hypothesis that the adaptation to endurance exercise training included a faster increase in blood flow at the onset of exercise was tested in 12 healthy young men who endurance-trained (ET) 2 h/day, for 10 days at 65% VO2 peak on a cycle ergometer, and in 11 non-training control (C) subjects.
Methods: Blood flow was estimated from changes in femoral artery mean blood velocity (MBV) by pulsed Doppler. Beat-by-beat changes in cardiac output (CO) and mean arterial pressure (MAP) were obtained by impedance cardiography and a Finapres finger cuff, respectively. MBV, MAP and CO were measured at rest and during 5 min of dynamic knee extension exercise. Both legs worked alternately with 2 s raising and lowering a weight (15% maximal voluntary contraction) followed by 2 s rest while the other leg raised and lowered the weight.
Results: In the ET group the time to 63% (T63%) of the approximately exponential increase in MBV following 10 days of training (8.6 +/- 1.2 s, mean +/- s.e.) was significantly faster than the Day 0 response (14.2 +/- 2.1 s, P < 0.05). The T63% of femoral artery vascular conductance (VCfa) was also faster following 10 days of ET (9.4 +/- 0.9 s) versus Day 0 (16.0 +/- 2.5 s) (0.05). There was no change in the T63% of both MBV and VCfa for the C group. The kinetics of CO were not significantly affected by ET, but the amplitude of CO in the adaptive phase, and at steady state, were significantly greater (P < 0.05) at Day 10 compared to Day 0 for the ET group with no change in the C group.
Conclusions: These data supported the hypothesis that endurance training resulted in faster adaptation of blood flow to exercising muscle, and further showed that this response occurred early in the training program.