A strategy that combines limited proteolysis experiments and mass spectrometric analysis of the fragments generated has been developed to probe protease-accessible sites on the protein surface. This integrated approach has been employed to investigate the tertiary structure of the Minibody, a de novo designed 64-residue protein consisting of a beta-sheet scaffold based on the heavy-chain variable-domain structure of a mouse immunoglobulin and containing two segments corresponding to the hypervariable H1 and H2 regions. The low solubility of the protein prevented a detailed characterization by NMR and/or X-ray. Different proteases were used under strictly controlled conditions and the cleavage sites were mapped onto the anticipated Minibody model, leading to the identification of the most exposed regions. A single-residue mutant was constructed and characterized, following the same procedure, showing a slightly higher correspondence with the predicted model. This strategy can be used to effectively supplement NMR and X-ray investigations of protein tertiary structure, where these procedures cannot provide definitive data, or to verify and refine protein models.