Background: Homeotic genes controlling the identity of flower organs have been characterized in several plant species. To determine whether cells expressing these genes are specified to follow particular developmental fates, we have studied the pattern of cell lineages in developing flowers of Antirrhinum. Each flower has four whorls of organs, and progenitor cells of these can be marked at particular stages of development using a temperature-sensitive transposon. This allows the cell lineages in the flower to be followed, as well as giving information about rates of cell division.
Results: We show here that, prior to the emergence of organ primordia, cells in the floral meristem have not been allocated organ identities. After this time, lineage restrictions arise between whorls, correlating with the onset of expression of genes that control organ identity. A further lineage restriction appears slightly later on, between the dorsal and ventral surfaces of the petal. Our results further suggest that the rates of cell division fluctuate during key stages of meristern development, perhaps as a consequence of meristem-identity gene expression.
Conclusions: The patterns of lineage restriction and organ-identity gene expression in early floral meristems are consistent with some cells being allocated specific identities at about this stage of development. Plant cells cannot move relative to each other, so lineage restrictions in plants may reflect particular orientations and/or rates of growth at boundary regions.