Cellular functions, such as the cytolytic potential of CTLs, can be regulated by mono-ADP-ribosylation of target proteins. Recently, the T cell differentiation marker RT6 has been shown to possess mono-ADP-ribosyltransferase activity. Defects in RT6 expression coincide with increased susceptibility in animal models for insulin-dependent diabetes mellitus and other autoimmune diseases. We present an analysis of the rat RT6 gene, providing a basis for studying the regulation of this gene in T cells of normal and diabetes-prone rats. It is the first structural analysis of a mammalian mono-ADP-ribosyltransferase gene. The RT6 gene consists of eight exons spanning approximately 20 kb. The proximal four exons encode 5' untranslated region sequences and are found in multiple alternatively spliced variants. Exon 5 encodes the N-terminal signal sequence. An unusually large exon 7 encodes the entire native polypeptide. The final exon 8 encodes the C-terminal signal sequence for glycosylphosphatidylinositol anchor attachment and the 3' untranslated region. Two independent TATA box-containing promoters associated with exons 1 and 2 were identified, and their activity was verified in transient transfection assays. The distal promoter displays elements contained in the regulatory regions of T cell-specific genes, such as ets and ikaros. Analysis of RT6 transcripts showed that this promoter is the major one in adult rat spleen cells. The 3' end of the gene does not display alternative splicing. However, two polyadenylation signals are found in the 3' untranslated region.