By serving as host recipients of xenografts from both humans and animals, severe combined immunodeficient (SCID) mice have become valuable to many laboratories interested in examining the pathophysiology of different diseases. To gain insight into the usefulness of the SCID mutation in retrovirus research, rhesus monkey fetal hematolymphoid tissues (liver and thymus) were used to construct a SCID-rhesus chimeric mouse (SCID-rh) and were engrafted in the renal capsule. The size and maturation of the thymic engrafts were monitored grossly, histologically, and immunologically. SCID mice were tolerant to rhesus tissues, and thymic engrafts contained thymocytes at different stages of maturation and differentiation that had morphologic features similar to age-matched rhesus thymus. Mature single positive CD2+, CD4+, and CD8+ T lymphocytes that were phenotypically similar to rhesus T lymphocytes were present at low levels (2% to 5%) in the peripheral blood and at moderately higher levels (7% to 15%) in the spleens of SCID-rh mice obtained between 12 and 15 weeks after thymus/liver engraftment. Within 3 weeks after engraftment, > 85% of the thymocytes in the thymic engrafts were immature double positive CD4+CD8+ T cells. The highest number of positive cells were seen in thymic engrafts obtained at 12 to 18 weeks. During these weeks, > 90% of the cells were double positive (CD2+CD4+, CD2+CD8+, and CD4+CD8+). After infection of the engrafted thymus tissue with simian immonodeficiency virus (SIVmac239), PCR analysis revealed successful viral infection of engrafts at 2 and 4 weeks after infection. No significant histopathologic and flow cytometric changes were observed in the thymic engrafts at 2 and 4 weeks after infection. An unrelated lesion of thymic lymphomas involving the SCID host thymus was seen in 12% of the mice. The data presented herein suggest that the SCID-rh is a valuable model for specific studies related to thymus-retrovirus interaction and that it could be used for further studies. The results are discussed in relation to current knowledge of thymus involvement during simian and human immunodeficiency virus infection.