V79 Chinese hamster cells were constructed for stable expression of human cytochrome P450 3A4 with and without coexpression of human NADPH-cytochrome P450 oxidoreductase. Expression of the cDNAs was shown by Northern and Western analyses. Activity was tested by 6 beta-hydroxylation of testosterone for cytochrome P450 3A4 and by cytochrome c reduction for NADPH-cytochrome P450 reductase. Five V79 cell lines were obtained expressing cytochrome P450 3A4, human NADPH-cytochrome P450 oxidoreductase, and both. Cytochrome P450 3A4 activity depended highly on cytochrome P450 reductase activity, with lowest activity when only the parental Chinese hamster cytochrome P450 reductase was present, 5- and 10-fold higher when coexpressed with the human NADPH-cytochrome P450 reductase. Correspondingly, cytotoxic and genotoxic potency of aflatoxin B1 was increased by orders of magnitudes when human cytochrome P450 3A4 was coexpressed with the human NADPH-cytochrome P450 reductase. The effect of NADPH-cytochrome P450 reductase coexpression on cytochrome P450 3A4 activity was also tested by nifedipine oxidation and midazolam hydroxylation. Nifedipine oxidation was increased about 10-fold, 1-hydroxylation of midazolam and 4-hydroxylation of midazolam were increased 15-fold.