13C- and 2H-NMR experiments were used to examine the phase behavior and dynamic structures of N-palmitoylgalactosylsphingosine (NPGS) (cerebroside) and cholesterol (CHOL) in binary mixtures. 13C spectra of 13C=O-labeled and 2H spectra of [7,7-2H2] chain-labeled NPGS as well as 3 alpha-2H1 CHOL indicate that cerebroside and CHOL are immiscible in binary mixtures at temperatures less than 40 degrees C. In contrast, at 40 degrees C < t < or = T(C) (NPGS), up to 50 mol% CHOL can be incorporated into melted cerebroside bilayers. In addition, 13C and 2H spectra of melted NPGS/CHOL bilayers show a temperature and cholesterol concentration dependence. An analysis of spectra obtained from the melted 13C=O NPGS bilayer phase suggests that the planar NH-C=O group assumes an orientation tilted 40 degrees-55 degrees down from the bilayer interface. The similarity between the orientation of the amide group relative to the bilayer interface in melted bilayers and in the crystal structure of cerebroside suggests that the overall crystallographic conformation of cerebroside is preserved to a large degree in hydrated bilayers. Variation of temperature from 73 degrees to 86 degrees C and CHOL concentration from 0 to 51 mol% results in small changes in this general orientation of the amide group. 2H spectra of chain-labeled NPGS and labeled CHOL in NPGS/CHOL bilayer demonstrate that molecular exchange between the gel and liquid-gel (LG) phases is slow on the 2H time scale, and this facilitates the simulation of the two component 2H spectra of [7,7-2H2]NPGS/CHOL mixtures. Simulation parameters are used to quantitate the fractions of gel and LG cerebroside. The quadrupole splitting of [7,7-2H2]NPGS/CHOL mixtures and 2H simulations allows the LG phase bilayer fraction to be characterized as an equimolar mixture of cerebroside and CHOL.