The binding of two different reaction products (p-nitrobenzyl glutathione and the aflatoxin-glutathione conjugate) to mouse glutathione S-transferase A3-3 (mGSTA3-3) has been measured using equilibrium dialysis and a direct fluorescence quenching technique. As expected, p-nitrobenzyl glutathione was found to bind with a stoichiometry of 2.24 +/- 0.17 mol/mol of dimeric enzyme. However, the much larger aflatoxin-glutathione conjugate, 8, 9-dihydro-8-(S-glutathionyl)-9-hydroxyl-aflatoxin B1 (AFB-GSH), was found to bind with a stoichiometry of 1.12 +/- 0.08 mol/mol of dimeric enzyme. p-Nitrobenzyl glutathione bound mGSTA3-3 with a dissociation constant (Kd) of 59 +/- 17 microM while the aflatoxin-glutathione conjugate bound the enzyme with a Kd of 0.86 +/- 0.19 microM. Glutathione competitively inhibited binding of AFB-GSH to mGSTA3-3 with a Ki of 1.5 mM, suggesting that AFB-GSH was binding to the enzyme active site. Although AFB-GSH bound to mGSTA3-3 with a stoichiometry of 1 mol/mol of dimeric enzyme, AFB-GSH completely inhibited activity toward 1-chloro-2, 4-dinitrobenzene, indicating that AFB-GSH binding to one active site alters affinity for 1-chloro-2,4-dinitrobenzene in the active site of the other subunit. To our knowledge, this is the first report of a glutathione S-transferase reaction product which binds to the enzyme with a stoichiometry of 1 mol/mol of dimer.