Some epidemiological studies report a relationship between magnetic field exposure and such human diseases as leukemia and immune system disturbances. The few published studies on animals do not demonstrate field exposure-related alterations in hematologic and immune systems. The data presented here are part of a broader study designed to investigate the possible effects of acute exposure to a 50 Hz linearly polarized magnetic field (10 microT) on hematologic and immunologic functions. Thirty-two young men (20-30 years old) were divided into two groups (control group i.e., sham-exposed. 16 subjects; exposed group, 16 subjects). All subjects participated in two 24 h experiments to evaluate the effects of both continuous and intermittent (1 h "off" and 1 h with the field switched "on" and "off" every 15 s) exposure to linearly polarized magnetic fields. The subjects were exposed to the magnetic field (generated by three Helmholtz coils per bed) from 23:00 to 08:00 while lying down. Blood samples were collected during each session at 3 h intervals from 11:00 to 20:00 and hourly from 22:00 to 08:00. No significant differences were observed between sham-exposed (control) and exposed men for hemoglobin concentration, hematocrit, red blood cells, platelets, total leukocytes, monocytes, lymphocytes, eosinophils, or neutrophils. Immunologic variables [CD3, CD4, CD8, natural killer (NK) cells and B cells] were unaltered. To our knowledge, this study is the first to document the effects of a 50 Hz magnetic field on the circadian rhythm of human hematologic and immune functions, and it suggests that acute exposure to either a continuous or an intermittent 50 Hz linearly polarized magnetic field of 10 microT, at least under the conditions of our experiment, does not affect either these function or their circadian rhythms in healthy young men.