Transforming growth factor-beta protein and messenger RNA expression is increased in the closing ductus arteriosus

Pediatr Res. 1996 Mar;39(3):427-34. doi: 10.1203/00006450-199603000-00009.

Abstract

In full-term newborns, permanent closure of the ductus arteriosus is associated with the formation of a neointima that is characterized by extracellular matrix deposition and smooth muscle cell migration. Transforming growth factor-beta (TGF-beta), a potent modulator of extracellular matrix deposition and smooth muscle cell migration, has been found to play a role in the remodeling associated with several forms of vascular disease. We examined the protein and mRNA expression of the three mammalian isoforms of TGF-beta (TGF-beta1, TGF-beta2, and TGF-beta3) during ductus arteriosus closure in full-term lambs. We found that the temporal changes and cellular localization of the proteins and mRNAs of all three TGF-beta isoforms were similar. TGF-beta proteins and mRNAs were present in very low levels in the late-gestation fetal ductus. Within 24 h of delivery, there was enhanced expression of TGF-beta in the newly forming neointima and outer muscle media; this continued to increase over the next 10 d. Increased expression of TGF-beta in the inner muscle media and adventitia lagged behind that of the neointima and outer muscle media. TGF-beta was not found in the luminal endothelial cells at any time. In contrast to the pattern described above, the appearance of TGF-beta protein differed from that of mRNA in the vasa vasorum of the ductus wall. After delivery, there was an increase in TGF-beta immunoreactivity in the smooth muscle cell layers of the vasa vasorum without any concurrent mRNA expression. The appearance of TGF-beta at the time of ductus closure suggests an important role for this growth factor in the reorganization of the ductus wall after birth.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Ductus Arteriosus / embryology
  • Ductus Arteriosus / metabolism*
  • Ductus Arteriosus / ultrastructure
  • Gene Expression
  • Immunoenzyme Techniques
  • In Situ Hybridization
  • RNA, Messenger / metabolism
  • Sheep
  • Transforming Growth Factor beta / genetics
  • Transforming Growth Factor beta / metabolism*

Substances

  • RNA, Messenger
  • Transforming Growth Factor beta