Compressive strength measurements were conducted on 32 macroporous biphasic calcium phosphate (MBCP) samples to evaluate the influences and interactions of five synthesis factors: chemical composition, percentage of macropores, mean size of macropores, isostatic compaction pressure, and sintering temperature. These parameters were varied simultaneously between two limit levels. Experiments used a factorial design method (FDM) allowing optimization of the number of samples as well as statistical analysis of results. FDM showed that compressive strength, in a defined experimental area, can be described by a first-order polynomial equation in which the percentage of macroporosity and sintering temperature are the major influences. This study leads up to an isoresponse line diagram that will allow the manufacture of some classes of MBCP with fitted compressive strength.