Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which accumulates in a number of inherited diseases in human. Because beta-oxidation is blocked by the methyl group at C-3, phytanic acid first undergoes decarboxylation via an alpha-oxidation mechanism. The structure and subcellular localization of the phytanic acid alpha-oxidation pathway have remained enigmatic through the years, although they have generally been assumed to involve phytanic acid and not its CoA-ester. This view has recently been challenged by the findings that in rat liver phytanic acid first has to be activated to its CoA-ester before alpha-oxidation and by the discovery of a new enzyme, phytanoyl-CoA hydroxylase, which converts phytanoyl-CoA to 2-hydroxyphytanoyl-CoA. We now show that this newly discovered enzyme is also present in human liver. Furthermore, we show that this enzyme is located in peroxisomes and deficient in liver from Zellweger patients who lack morphologically distinguishable peroxisomes, which provides an explanation for the long-known deficient oxidation of phytanic acid in these patients. These results suggest that phytanic acid alpha-oxidation is peroxisomal and that it utilizes the coenzyme A derivative as substrate, thus giving further support in favour of the new, revised pathway of phytanic acid alpha-oxidation.