Binding of fibrinogen to intercellular adhesion molecule 1 (ICAM-1) enhances leukocyte adhesion to endothelium by acting as a bridging molecule between the two cell types. Here, a panel of four monoclonal antibodies (mAbs) to ICAM-1 was used to dissect the structure-function requirements of this recognition. All four mAbs bound to ICAM-1 transfectants and immunoprecipitated and immunoblotted ICAM-1 from detergent-solubilized JY lymphocyte extracts. Functionally, mAbs 1G12 and 2D5 inhibited binding of 125I-fibrinogen to ICAM-1-transfectants and abrogated the enhancing effect of fibrinogen on mononuclear cell adhesion to endothelium and transendothelial migration. In contrast, mAbs 3D6 and 6E6 did not affect ICAM-1 recognition of fibrinogen. With respect to other ligands, mAbs 1G12 and 2D5 completely inhibited attachment of Plasmodium falciparum-infected erythrocytes to immobilized recombinant ICAM-1-Fc, whereas they had no effect on LFA-1-dependent T cell binding to ICAM-1-Fc. Conversely, mAbs 3D6 and 6E6 completely abolished LFA-1 binding to ICAM-1-Fc. Epitope assignment using ICAM-1 chimeras and receptor mutants revealed that the fibrinogen-blocking mAbs 1G12 and 2D5 reacted with domain 1 of ICAM-1, and their binding was disrupted by 97 and 70% by mutations of D26 and P70, respectively, whereas mAbs 3D6 and 6E6 bound to domain 2 of ICAM-1. By recognizing a site distinct from that of beta2 integrins Mac-1 or LFA-1, fibrinogen binding to ICAM-1 may provide an alternative pathway of intercellular adhesion and/or modulate integrin-dependent adherence during inflammation and vascular injury.