Activation of the recombinant human alpha 7 nicotinic acetylcholine receptor significantly raises intracellular free calcium

J Pharmacol Exp Ther. 1997 Jan;280(1):428-38.

Abstract

The alpha 7 nicotinic acetylcholine receptor (nAChR) subtype, unlike other neuronal nicotinic receptors, exhibits a relatively high permeability to Ca++ ions. Although Ca++ entry through this receptor subtype has been implicated in various Ca(++)-dependent processes in the central nervous system, little is known about how this receptor modulates mammalian intracellular Ca++ dynamics. Intracellular Ca++ responses evoked by activation of the human alpha 7 nAChRs stably expressed in HEK-293 (human embryonic kidney) cells were studied. Inward current and intracellular Ca++ transients were recorded simultaneously in response to a fast drug application system. Current recordings under whole-cell voltage-clamp and fast ratiometric intracellular Ca++ imaging acquisition were synchronized to drug pulses. The mean peak [Ca++]i observed with 100 microM (-)-nicotine was 356 +/- 48 nM (n = 8). The magnitude of the intracellular Ca++ elevation corresponds to a 20% fractional current carried by Ca++ ions. The EC50 of the intracellular Ca++ responses for (-)-nicotine, (+/-)-epibatidine, 1,1 dimethyl-4-phenyl-piperazinium and acetylcholine were 51, 3.5, 75 and 108 microM, respectively. These EC50 values strongly correlate with those recorded for the cationic inward current through alpha 7 nAChR. alpha-Bungarotoxin, methyllcaconitine or extracellular Ca++ chelation ablated (-)-nicotine-evoked increase in intracellular Ca++ concentration. This study provides evidence that cation influx through the human alpha 7 nAChR is sufficient to mediate a significant, transient, rise in intracellular Ca++ concentration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Calcium / metabolism*
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Humans
  • Molecular Sequence Data
  • Nicotine / pharmacology
  • Nicotinic Agonists / pharmacology
  • Receptors, Nicotinic / physiology*
  • Recombinant Proteins

Substances

  • Nicotinic Agonists
  • Receptors, Nicotinic
  • Recombinant Proteins
  • Nicotine
  • Calcium