Functional evidence for L-type Ca2+ channels controlling ANG II-induced adrenal catecholamine release in vivo

Am J Physiol. 1996 Dec;271(6 Pt 2):R1713-9. doi: 10.1152/ajpregu.1996.271.6.R1713.

Abstract

The aim of the present study was to investigate the functional involvement of L- and/or N-type Ca2+ channels in adrenal catecholamine secretion in response to exogenous angiotensin II (ANG II) in anesthetized dogs. Plasma catecholamine concentrations in adrenal venous and aortic blood were determined by a high-performance liquid chromatography-electrochemical method. In the first series of experiments, repeated infusions of BAY K 8644 locally into the left adrenal gland at 15-min intervals resulted in significant and reproducible increases in adrenal catecholamine secretion. Nifedipine, similarly administered 5 min before BAY K 8644, diminished BAY K 8644-induced catecholamine secretion in a dose-dependent manner and completely blocked the catecholamine response at the highest dose tested. In the second series of experiments, local infusion of ANG II resulted in a significant increase in adrenal catecholamine secretion. The maximum catecholamine response to ANG II was attenuated by approximately 65% in the presence of nifedipine at the dose that abolished the BAY K 8644-induced catecholamine release. This inhibition by nifedipine remained unchanged in the presence of omega-conotoxin. The present study shows that dihydropyridine-sensitive L-type Ca2+ channels are operative in the adrenal medulla of the dog in vivo. The results indicate that the L-type Ca2+ channels are only partially implicated in the local regulation of ANG II-induced adrenal catecholamine secretion, suggesting the existence of another mechanism. However, omega-conotoxin-sensitive N-type Ca2+ channels are unlikely to be functionally involved in postsynaptic mechanisms mediating adrenal catecholamine secretion in response to exogenous ANG II under in vivo conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester / pharmacology
  • Adrenal Medulla / drug effects
  • Adrenal Medulla / metabolism*
  • Angiotensin II / pharmacology*
  • Animals
  • Calcium Channel Agonists / pharmacology
  • Calcium Channel Blockers / pharmacology
  • Calcium Channels / physiology*
  • Dogs
  • Epinephrine / metabolism*
  • Male
  • Nifedipine / pharmacology
  • Norepinephrine / metabolism*
  • Peptides / pharmacology
  • omega-Conotoxin GVIA

Substances

  • Calcium Channel Agonists
  • Calcium Channel Blockers
  • Calcium Channels
  • Peptides
  • Angiotensin II
  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
  • omega-Conotoxin GVIA
  • Nifedipine
  • Norepinephrine
  • Epinephrine