Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging

Nucl Med Biol. 1996 Nov;23(8):941-6. doi: 10.1016/s0969-8051(96)00134-5.

Abstract

Hypoxic accumulation of 2-[5,6-3H]fluoro-2-deoxy-D-glucose ([3H]FDG),L-[methyl-3H] methionine ([3H]MET), and L-[1-3H]leucine ([3H]LEU) was evaluated in two cell lines (UT-SCC-5 and UT-SCC-20) obtained from patients with squamous-cell carcinoma of the head and neck. Both cell lines were exposed to decreasing oxygen atmosphere (20%, 1.5%, or 0% O2) for 6 h, after which they were incubated for a further 1 h with tritiated FDG, MET, or LEU. An anoxic atmosphere resulted in a mean increase of [3H]FDG uptake of 120% and 46% over a baseline 20% oxygen atmosphere for UT-SCC-5 and UT-SCC-20A, respectively. Both total and acid-precipitable [3H]MET uptake remained unchanged at 0% versus baseline, whereas acid-precipitable [3H]LEU uptake decreased by 46% for UT-SCC-5 and by 34% for UT-SCC-20A at 0% O2. Our findings demonstrate that [3H]FDG accumulation is increased in hypoxic UT-SCC cell lines probably through activation of the metabolic steps associated with the glycolytic pathway. The decrease in acid-precipitable [3H]LEU uptake in hypoxia may indicate a decline in protein synthesis, whereas the unchanged [3H]MET uptake probably reflects the unaffected amino acid transport and slow incorporation of radiolabeled methyl group of MET in tumor proteins and nucleic acids. FDG and LEU, but probably not MET, warrant additional study as hypoxia-avid or hypoxia-reduced tracers for assessment of treatment effects designed to modify hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Carcinoma, Squamous Cell / diagnostic imaging*
  • Carcinoma, Squamous Cell / metabolism*
  • Cell Hypoxia
  • Cell Survival / drug effects
  • Cell Survival / physiology
  • Deoxyglucose / analogs & derivatives*
  • Deoxyglucose / pharmacokinetics
  • Evaluation Studies as Topic
  • Fluorodeoxyglucose F18
  • Head and Neck Neoplasms / diagnostic imaging*
  • Head and Neck Neoplasms / metabolism*
  • Humans
  • Leucine / pharmacokinetics*
  • Methionine / pharmacokinetics*
  • Oxygen / metabolism
  • Oxygen / pharmacology*
  • Tomography, Emission-Computed
  • Tritium* / pharmacokinetics
  • Tumor Cells, Cultured

Substances

  • Fluorodeoxyglucose F18
  • Tritium
  • Deoxyglucose
  • Methionine
  • Leucine
  • Oxygen