The gram-negative bacterium Bordetella pertussis has adapted specific secretion machineries for each of its major secretory proteins. In particular, the highly efficient secretion of filamentous hemagglutinin (FHA) is mediated by the accessory protein FhaC. FhaC belongs to a family of outer membrane proteins which are involved in the secretion of large adhesins or in the activation and secretion of Ca2+-independent hemolysins by several gram-negative bacteria. FHA shares with these hemolysins a 115-residue-long amino-proximal region essential for its secretion. To compare the secretory pathways of these hemolysins and FHA, we attempted functional transcomplementation between FhaC and the Proteus mirabilis hemolysin accessory protein HpmB. HpmB could not promote the secretion of FHA derivatives. Likewise, FhaC proved to be unable to mediate secretion and activation of HpmA, the cognate secretory partner of HpmB. In contrast, ShlB, the accessory protein of the closely related Serratia marcescens hemolysin, was able to activate and secrete HpmA. Two invariant asparagine residues lying in the region of homology shared by secretory proteins and shown to be essential for the secretion and activation of the hemolysins were replaced in FHA by site-directed mutagenesis. Replacements of these residues indicated that both are involved in, but only the first one is crucial to, FHA secretion. This slight discrepancy together with the lack of functional complementation demonstrates major differences between the hemolysins and FHA secretion machineries.