The notion that an increased expression of immediate early genes such as c-fos and c-jun is an absolute requirement for the G0-G1 transition of the hepatocytes has recently been challenged by the finding that rat liver cell proliferation induced by primary mitogens may occur in the absence of such changes (Columbano and Shinozuka, 1996). To further investigate the relationship between immediate early genes and hepatocyte proliferation, we have compared the hepatic levels of c-fos, c-jun and LRF-1 transcripts during mouse liver cell proliferation in two conditions: (i) direct hyperplasia induced by the non-genotoxic hepatocarcinogen 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, and (ii) compensatory regeneration caused by a necrogenic dose of carbon tetrachloride. The results show striking differences in the activation of early genes. In spite of a rapid stimulation of S phase by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (approximately 8% of hepatocytes were BrdU-positive as early as 24 h after mitogen treatment versus 1% of labelled hepatocytes after 2/3 partial hepatectomy), no changes in the expression of c-fos, c-jun and LRF-1 could be observed. Moreover, no change in steady state mRNA hepatic levels of IGFBP-1 (a gene highly expressed in rat liver following partial hepatectomy), and only a slight increase in c-myc and PRL-1, was found after mitogen administration. On the contrary, a rapid, massive and transient increase in the hepatic mRNA levels of all these genes was observed during carbon tetrachloride induced regeneration. The results indicate that increased expression of immediate early genes may be dependent upon the nature of the proliferative stimulus, and it may not be a prerequisite in certain in vivo conditions such as proliferation induced in the absence of liver tissue damage.