Laminin-induced clustering of dystroglycan on embryonic muscle cells: comparison with agrin-induced clustering

J Cell Biol. 1997 Mar 10;136(5):1047-58. doi: 10.1083/jcb.136.5.1047.

Abstract

The effect of laminin on the distribution of dystroglycan (DG) and other surface proteins was examined by fluorescent staining in cultures of muscle cells derived from Xenopus embryos. Western blotting confirmed that previously characterized antibodies are reactive in Xenopus. In control cultures, alphaDG, betaDG, and laminin binding sites were distributed as microclusters (<1 microm2 in area) over the entire dorsal surface of the muscle cells. Treatment with laminin induced the formation of macroclusters (1-20 microm2), accompanied by a corresponding decline in the density of the microclusters. With 6 nM laminin, clustering was apparent within 150 min and near maximal within 1 d. Laminin was effective at 30 pM, the lowest concentration tested. The laminin fragment E3, which competes with laminin for binding to alphaDG, inhibited laminin-induced clustering but did not itself cluster DG, thereby indicating that other portions of the laminin molecule in addition to its alphaDG binding domain are required for its clustering activity. Laminin-induced clusters also contained dystrophin, but unlike agrin-induced clusters, they did not contain acetylcholine receptors, utrophin, or phosphotyrosine, and their formation was not inhibited by a tyrosine kinase inhibitor. The results reinforce the notion that unclustered DG is mobile on the surface of embryonic muscle cells and suggest that this mobile DG can be trapped by at least two different sets of molecular interactions. Laminin self binding may be the basis for the laminin-induced clustering.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Agrin / pharmacology*
  • Animals
  • Antibody Specificity
  • Cells, Cultured
  • Cytoskeletal Proteins / analysis
  • Cytoskeletal Proteins / chemistry*
  • Dystroglycans
  • Dystrophin / analysis
  • Humans
  • Laminin / pharmacology*
  • Membrane Glycoproteins / analysis
  • Membrane Glycoproteins / chemistry*
  • Membrane Proteins / analysis
  • Muscle, Skeletal / chemistry*
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / embryology
  • Peptide Fragments / pharmacology
  • Rabbits
  • Receptors, Laminin / analysis
  • Receptors, Laminin / chemistry*
  • Utrophin
  • Xenopus laevis

Substances

  • Agrin
  • Cytoskeletal Proteins
  • DAG1 protein, human
  • Dystrophin
  • Laminin
  • Membrane Glycoproteins
  • Membrane Proteins
  • Peptide Fragments
  • Receptors, Laminin
  • Utrophin
  • Dystroglycans