The dynamic metabolic effects of a fructose infusion challenge on hepatic intracellular levels of adenosine 5'-triphosphate (ATP), inorganic phosphate (Pi) and phosphomonoesters (PME) were monitored noninvasively by 31P MRS in a remote tumour-bearing rat model. Fisher male rats were inoculated with a methylcholanthrene-induced sarcoma. Seventeen rats were randomized into three groups: control (n = 6), low tumour burden (LTB, n = 6), or moderate tumour burden (MTB, n = 5). The LTB group had tumour burdens of 0.2-2.0% while the MTB group had tumour burdens of 2.6-5.7%. All rats were in the pre-clinical phase of cancer cachexia as determined by food intake and body weight. Rats were infused with 1.2 g/kg of fructose i.v. and the metabolic response of the liver was monitored with time over 1 h via 31P MRS. In all groups an immediate increase in hepatic levels of PME was noted, which returned to baseline values over the course of the experiment, reflecting the phosphorylation of fructose to fructose 1-phosphate. For the MTB rats, the return to baseline levels was more rapid than in the control or LTB group. All groups experienced a 20% decrease in hepatic ATP levels which did not return to baseline over the 1 h observation period. As well, all groups experienced an initial fall in Pi, which recovered to prefructose levels or greater. MTB rats demonstrated a 30-40% increase in Pi concentration and a 60-70% increase in Pi/ATP ratio after infusion with fructose as compared to LTB and control rats (ANOVA;p<0.05). This is consistent with cachexia-induced enhancement of hepatic gluconeogenic activity, and hence more rapid release of Pi from the phosphorylated metabolites in the MTB rats. Thus fructose infusion and hepatic 31P MRS permit pre-clinical detection of cancer cachexia as reflected by increased Pi generation and more rapid removal of PME.