Background: Reduced galactosylation of the O-linked glycans of the IgA1 hinge region in IgAN has recently been described. To investigate the underlying defect resulting in this abnormality, we have measured the activity of beta 1,3 galactosyltransferase, the enzyme responsible for galactosylation of O-linked sugars.
Methods: A galactose-acceptor substrate was prepared from degalactosylated hinge region fragments of normal IgA1, and incubated with the T cell, B cell, and monocyte lysates from patients with IgAN and controls for acceptor regalactosylation. The extent of acceptor galactosylation was then measured with biotinylated Vicia villosa lectin (VV), which is specific for ungalactosylated moieties. Lectin binding of serum IgA from the same subjects was also measured.
Results: T cell and monocyte beta 1,3 galactosyltransferase activities did not differ between IgAN and control, but B cell lysates in IgAN showed significantly lower beta 1,3 galactosyltransferase activity than control (6.2 +/- 0.71 vs. 9.5 +/- 1.03 AU/microgram, P = 0.018). Furthermore, B cell beta 1,3 galactosyltransferase activity showed a negative correlation (r = -0.87, P = 0.002) with VV lectin binding of serum IgA in IgAN, but not controls.
Conclusions: These data indicate that altered IgA1 O-galactosylation in IgAN results from a B cell-restricted reduction of beta 1,3 galactosyltransferase activity. This enzyme defect may be a fundamental pathogenic abnormality in IgAN.