Serotonin is a neurotransmitter involved in a large number of psychophysiological processes including the regulation of mood, arousal, aggression, sleep, learning, nociceptions, nerve growth and importantly, appetitive functions. Alterations of 5-HT receptor activity have been shown to occur in many psychiatric diseases including depression, anxiety, eating disorders, schizophrenia etc. Hence, genetic variation in genes coding for serotonin receptor proteins might well be involved in the genetic predisposition to these diseases and therefore are of great pharmacogenetic relevance. Knockout mice deficient of a functional 5-HT2C receptor have implicated a potential role of this receptor subtype in the serotonergic control of appetite. A Cys23Ser mutation in the human 5-HT2C receptor gene discovered recently prompted us to investigate this mutation with regard to the development of human obesity. We have evaluated this mutation in 241 obese children and adolescents (mean BMI > or = 97th percentile), 80 normal weight children (BMI 5th-85th percentile) and 92 underweight probands (BMI < or = 15th percentile) for a possible association with obesity. The frequencies of the mutant allele in all three weight groups (obese subjects: 0.1597; normal weight: 0.168; underweight: 0.1575) were very similar. Association as well as linkage studies were negative. Therefore it is unlikely that this receptor mutation plays a direct role in the development of human obesity.