The extracellular lactate concentration and blood flow in the cerebral cortex of urethane-anesthetized, paralyzed and artificially ventilated rats were monitored continuously and simultaneously using an enzyme electrode and a laser Doppler flowmeter (LDF), respectively, during chemical stimulation of the nucleus tractus solitarii (NTS) by microinjection of L-glutamate (1.7 nmol 50 nl). Chemical stimulation of the NTS significantly decreased the arterial blood pressure (ABP) from 85 +/- 17 to 68 +/- 14 mmHg, heart rate from 418 +/- 13 to 402 +/- 19 beats x min(-1) and cerebral blood flow (CBF) by 17.9 +/- 6.2% (P < 0.001). However, chemical stimulation of the NTS significantly increased the lactate concentration by 58.9 +/- 17.3 microM (P < 0.001). Barostat maneuver, which held systemic ABP constant during chemical stimulation of the NTS attenuated the responses in CBF and lactate concentration by 30 and 27%, respectively. The onset of the increase in lactate concentration was delayed about 19 s after that of the CBF decrease. Circulatory lactate produced no significant change in the cerebral extracellular lactate concentration. These results indicate that chemical stimulation of the NTS induces an increase in extracellular lactate concentration in the cerebral cortex through a decrease in CBF via cerebral vasoconstriction.