Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress

J Vasc Res. 1997 May-Jun;34(3):212-9. doi: 10.1159/000159225.

Abstract

Fluid shear stress is one of the most important mechanical forces acting upon vascular endothelium, because of its location at the interface between the bloodstream and vascular wall. Recent evidence indicates that several intracellular signaling events are stimulated in endothelial cells in response to shear stress. Through these events, shear stress modulates endothelial cell function and vascular structure, but the molecular basis of shear stress mechanotransduction remains to be elucidated. In our research we have focused on three temporal signal responses to shear stress: (1) production of nitric oxide (NO) as an immediate response; (2) activation of extracellular-regulated kinases (ERK1/2; p44/p42 mitogen-activated protein (MAP) kinases) as a rapid response, and (3) tyrosine phosphorylation of focal adhesion kinase (FAK) as a sustained response. In terms of vessel biology, NO production, and ERK1/2 and FAK activation seem to be correlated with vascular homeostasis, gene expression and cytoskeletal rearrangement, respectively. In this review, we discuss the mechanisms that establish the temporal order of shear stress-stimulated responses based on a hierarchy for assembly of signal transduction molecules at the cell plasma membrane.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism
  • Cell Adhesion Molecules / metabolism
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / physiology*
  • Focal Adhesion Kinase 1
  • Focal Adhesion Protein-Tyrosine Kinases
  • Humans
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases*
  • Nitric Oxide / biosynthesis
  • Phosphorylation
  • Protein-Tyrosine Kinases / metabolism
  • Signal Transduction*
  • Stress, Mechanical
  • Tyrosine / metabolism

Substances

  • Cell Adhesion Molecules
  • Nitric Oxide
  • Tyrosine
  • Protein-Tyrosine Kinases
  • Focal Adhesion Kinase 1
  • Focal Adhesion Protein-Tyrosine Kinases
  • PTK2 protein, human
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases