To investigate retrograde transport along the biosynthetic/secretory pathway, we have constructed a recombinant Shiga toxin B-fragment carrying an N-glycosylation site and a KDEL retrieval motif at its carboxyl terminus (B-Glyc-KDEL). After incubation with HeLa cells, B-Glyc-KDEL was progressively glycosylated in the endoplasmic reticulum (ER) and remained stably associated with this compartment. B-fragment with a nonfunctional KDEL sequence (B-Glyc-KDELGL) was glycosylated with about the same kinetics as B-Glyc-KDEL but localized at steady state to the Golgi apparatus. Morphological studies showed that B-Glyc-KDEL was delivered from the plasma membrane, via endosomes and the cisternae of the Golgi apparatus, to the ER. Moreover, the addition of a sulfation site allowed us to show that B-Glyc-KDEL on transit to the ER entered the Golgi apparatus through the trans-Golgi network. Transport of B-Glyc-KDEL to the ER was slowed down by nocodazole, indicating that microtubules are important for the retrograde pathway. Our results document the existence of a continuous pathway from the plasma membrane to the endoplasmic reticulum via the Golgi apparatus and show that a fully folded exogenous protein arriving in the endoplasmic reticulum via this pathway can undergo N-glycosylation.