Extrathyroidal effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on thyroid hormone turnover in male Sprague-Dawley rats

Endocrinology. 1997 Sep;138(9):3727-34. doi: 10.1210/endo.138.9.5386.

Abstract

Treatment of rats with different polyhalogenated aromatic hydrocarbons strongly decreases plasma T4, with little or no decrease in plasma T3. The extrathyroidal effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on thyroid hormone turnover were studied by i.p. administration of a single dose of 10 microg TCDD/kg BW or vehicle (corn oil) to euthyroid (Eu) rats, thyroidectomized (Tx) rats, and Tx rats infused with 1 microg T4 (Tx+T4) or 0.4 microg T3 (Tx+T3)/100 g BW x day by osmotic minipumps. Tx rats showed decreased plasma T4 and T3 and increased plasma TSH levels, decreased hepatic type I deiodinase (D1) and malic enzyme activities, and increased brain type II deiodinase (D2) activities. All parameters were largely restored to Eu levels in Tx+T4 rats and, except for plasma T4 and brain D2 activity, in Tx+T3 rats, validating the thyroid hormone-replaced Tx rats as models to study the peripheral effects of TCDD. Three days after TCDD administration, plasma T4 and free T4 levels were significantly reduced in Eu and Tx+T4 rats, and plasma T3 was significantly reduced in Tx+T3, but not in Eu or Tx+T4 rats. Plasma TSH was not affected by TCDD in any group. Hepatic T4 UDP-glucuronyltransferase (UGT) activity was induced approximately 5-fold by TCDD, whereas T3 UGT activity was only increased by about 20% (P = NS) in the different groups. TCDD produced an insignificant decrease in liver D1 activity in Tx rats and an insignificant increase in brain D2 activity in Tx rats and hormone-replaced Tx rats. Hepatic malic enzyme activity was significantly increased by TCDD in all groups, except Tx rats. These results strongly suggest that the thyroid hormone-decreasing effects of TCDD are predominantly extrathyroidal and mediated by the marked induction of hepatic T4 UGT activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / enzymology
  • Glucuronosyltransferase / metabolism
  • Iodide Peroxidase / metabolism
  • Isoenzymes / metabolism
  • Liver / enzymology
  • Malate Dehydrogenase / metabolism
  • Male
  • Polychlorinated Dibenzodioxins / administration & dosage
  • Polychlorinated Dibenzodioxins / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Thyroidectomy
  • Thyrotropin / blood
  • Thyroxine / administration & dosage
  • Thyroxine / blood*
  • Triiodothyronine / administration & dosage
  • Triiodothyronine / blood*

Substances

  • Isoenzymes
  • Polychlorinated Dibenzodioxins
  • Triiodothyronine
  • Thyrotropin
  • Malate Dehydrogenase
  • Iodide Peroxidase
  • Glucuronosyltransferase
  • Thyroxine