Volume and dose parameters for survival of non-small cell lung cancer patients

Radiother Oncol. 1997 Jul;44(1):23-9. doi: 10.1016/s0167-8140(97)00081-9.

Abstract

Background and purpose: To determine the effect of tumor volume and dose factors derived from 3-D treatment planning dose distributions on survival outcome for non-small cell lung cancer patients.

Materials and methods: Seventy-six consecutive patients diagnosed with medically inoperable or locally advanced, unresectable non-small cell lung cancer planned with 3-D treatment planning between 1986 and 1992 were the subject of this retrospective study. Patient characteristics and dosimetric parameters were analyzed for influence on overall survival and local progression-free survival (LPFS) using univariate and multivariate analysis.

Results: Nodal stage and stage were the most significant factors for overall survival and LPFS duration on both univariate and multivariate analysis. We found a wide range of primary tumor volume sizes for each stage. Patients with tumor volumes <200 cm3 had longer survival (P = 0.047). In an analysis stratifying patients into four groups by tumor volume (<200 cm3 versus >200 cm3) and nodes (negative versus positive), patients in the group with no nodal disease and <200 cm3 tumor volumes survived longer than patients in any other group (P = 0.046). No dose factors were statistically significant for longer survival. Longer LPFS was seen for (a) isocenter dose >70 Gy (P = 0.055) for the overall group of patients, (b) within a subgroup with no nodal disease and >73 Gy (P = 0.054), and (c) within a subgroup with no nodal disease and tumor volume <200 cm3 receiving >73 Gy (P = 0.086).

Conclusions: Several findings from the volume and dosimetric analysis in this study are noteworthy. Stage was found to be a poor predictor of primary tumor volume size. Also, tumor volume size (<200 cm3) in conjunction with nodal status (negative nodes) had an impact on survival though there was a mix of stage (I, IIIa, IIIb) in this group of patients. Finally, dose appears to influence local control (LPFS) for the overall group of patients and when tumor volumes are <200 cm3. Our data indicate that outcome following radiation may be better predicted by a staging system that takes into account tumor volume and nodal spread rather than a system that is largely based on anatomic location of disease. Dose prescription for lung cancer treatment might better be written based on tumor volume size.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Carcinoma, Non-Small-Cell Lung / mortality
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Carcinoma, Non-Small-Cell Lung / radiotherapy*
  • Disease-Free Survival
  • Humans
  • Lung Neoplasms / mortality
  • Lung Neoplasms / pathology
  • Lung Neoplasms / radiotherapy*
  • Multivariate Analysis
  • Neoplasm Staging
  • Radiotherapy Dosage