Pulsed Doppler spectral analysis is a well-established diagnostic technique in the assessment of arterial diseases. Because of hardware limitations, its use has been so far restricted to the analysis of a single sample volume located along the ultrasound beam axis. In this paper, we discuss the operation of a newly developed multigate instrument capable of performing, in real time, 64-point fast Fourier transforms of Doppler signals sampled from 64 different range cells. The new instrument is capable of accurately detecting the actual blood flow behavior in major human vessels. Significant examples of velocity profiles obtained in real time from carotid arteries in healthy subjects are reproduced here for the first time. Multigate extension of spectral analysis is demonstrated to be a suitable means for detailed in vivo investigation of blood flow dynamics.