T cells are primary targets in numerous gene therapy protocols. However, the use of subgroup C adenovirus serotype 2 or 5 (Ad2 or Ad5) as a vector to transduce T cells is limited by its poor transduction efficiency for these cells. In this report we show that poor T-cell transduction results from these cells lacking both the primary Ad2-Ad5 receptor, used in attachment, and the secondary Ad receptor, which mediates entry of most adenovirus serotypes. These deficiencies were overcome by using a bispecific antibody (bsAb) with specificities for human CD3 and for a FLAG epitope genetically introduced into Ad5 (Ad.FLAG) to redirect the virus to human T cells. The anti-FLAG x anti-CD3 bsAb increased Ad.FLAG binding 30-fold, induced the efficient uptake of Ad.FLAG into the cells, and led to a 100- to 500-fold increase in the transduction of resting T cells. Moreover, fluorescence-activated cell sorter analysis showed that 25 to 90% of the T cells were transduced by the bsAb-complexed Ad.FLAG at multiplicities of infection between 20 and 100 active particles per cell. These results demonstrate that bsAbs can target Ad to non-Ad receptors on cells that are normally resistant to Ad, resulting in their efficient and specific transduction.