This study was designed to test the hypothesis that systemic immune challenge with endotoxin inhibits the reproductive axis centrally by suppressing GnRH pulsatile release into hypophyseal portal blood. Using alert, normally behaving, ovariectomized ewes, we sampled hypophyseal portal blood at 10-min intervals beginning 4 h before and continuing 10 h after endotoxin (400 ng/kg, iv bolus, n = 6) or saline (vehicle, iv, n = 6). Simultaneous jugular samples for measurement of LH, cortisol, and progesterone were taken, and core body temperature was monitored by telemetry. Saline had no effect on any of the parameters in control ewes. In contrast, endotoxin dramatically inhibited the reproductive neuroendocrine axis coincident with stimulating the adrenal steroids, cortisol and progesterone, and elevating body temperature. Mean GnRH collection rate and GnRH pulse amplitude were suppressed (pre- vs. 7 h postendotoxin: collection rate 0.93 +/- 0.31 vs. 0.34 +/- 0.13 pg/min; amplitude 4.13 +/- 1.33 vs. 1.30 +/- 0.41 pg/min per pulse; P < 0.05 and P = 0.01). However, endotoxin did not have a significant effect on GnRH pulse frequency. Along with inhibited GnRH secretion, endotoxin significantly suppressed mean LH concentrations (P = 0.001) and LH pulse amplitude (P < 0.05). In addition, endotoxin suppressed LH pulse frequency (P = 0.01). Coincident with reproductive inhibition, endotoxin stimulated cortisol (P < 0.001), progesterone (P < 0.01), and core body temperature (P < 0.001). We conclude that the suppressive effects of endotoxin on the reproductive axis can be mediated centrally through an inhibition of GnRH and thus LH pulsatile secretion. The coincident stimulation of cortisol, progesterone, and temperature raises the possibility that the central inhibition of the reproductive system may be a consequence of any or all of these activated parameters.