Insulin-like growth factor (IGF) -independent growth inhibition of human breast cancer cells, Hs578T, by IGF-binding protein-3 (IGFBP-3) has previously been demonstrated. Cell growth is a balance between proliferation and programmed cell death (apoptosis). We have investigated whether IGFBP-3 can affect apoptosis of Hs578T cells. As no induction of apoptosis was found, we also investigated its effect on the response to ceramide, an intracellular second messenger that mediates the signal for apoptosis. Using the cell permeable ceramide analogue, C2, induction of apoptosis was established by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay, trypan blue uptake, morphological criteria, and flow cytometry. Incubation of cells with non-glycosylated IGFBP-3 (ngIGFBP-3; 0.5-100 ng/ml) resulted in no growth inhibition or increase in apoptosis; whereas, C2 (1-30 microM) resulted in a dose-dependent induction of apoptosis. Addition of IGFs to the cells, alone or with C2, elicited no response in terms of proliferation or survival, respectively. When the cells were preincubated with ngIGFBP-3 before addition of C2 (2-5 microM), apoptosis was accentuated in a dose-dependent manner (at 100 ng/ml IGFBP-3, apoptosis increased from 11 to 88%). In conclusion, we found that IGFBP-3 had no direct inhibitory effect on Hs578T cells but could accentuate apoptosis induced by the physiological trigger ceramide in an IGF-independent manner.