The yeast Saccharomyces cerevisiae contains two forms of cytochrome c, iso-1- and iso-2-cytochrome c, which are encoded by the nuclear genes CYC1 and CYC7, respectively. The cytochromes c are synthesized in the cytosol, imported into mitochondria, and subsequently modified by the covalent attachment of heme through the action of cytochrome c heme lyase, which is encoded by CYC3. Apo-iso-2-cytochrome c but not apo-iso-1-cytochrome c was observed in cyc3(-) mutants. Furthermore, pulse-chase experiments previously demonstrated that the lack of apo-iso-1-cytochrome c was due to its rapid degradation. We report herein that this degradation of apo-iso-1-cytochrome c is dependent on ubiquitination and on the action of the proteasome. Diminished degradation of apo-iso-1-cytochrome c was observed in pre2-2 and pre1-1 mutants having altered proteasome subunits; in ubc1, ubc4, and ubc5 strains lacking one or more of the ubiquitin-conjugating enzymes; and in strains blocked in multi-ubiquitination by overproduction of the abnormal ubiquitin-K48R ubiquitin. In addition, we have used epitope-tagged ubiquitin to demonstrate that apo-iso-1-cytochrome c but not apo-iso-2-cytochrome c is ubiquitinated. Furthermore, the degradation of apo-iso-1-cytochrome c was diminished when the N-terminal region was replaced with the N-terminal region of apo-iso-2-cytochrome c, indicating that this region may be the target for degradation. We suggest that ubiquitin-dependent degradation of apo-iso-1-cytochrome c is part of the regulatory process controlling the preferential expression of the iso-cytochromes c.