In recent years, it has become apparent that minerals can trigger alterations in gene expression by initiating signaling events upstream of gene transactivation. These cascades may be initiated at the cell surface after interaction of minerals with the plasma membrane either through receptorlike mechanisms or integrins. Alternatively, signaling pathways may be stimulated by active oxygen species generated both during phagocytosis of minerals and by redox reactions on the mineral surface. At least two signaling cascades linked to activation of transcription factors, i.e., DNA-binding proteins involved in modulating gene expression and DNA replication, are stimulated after exposure of lung cells to asbestos fibers in vitro. These include nuclear factor kappa B (NF kappa B) and the mitogen-activated protein kinase (MAPK) cascade important in regulation of the transcription factor, activator protein-1 (AP-1). Both NF kappa B and AP-1 bind to specific DNA sequences within the regulatory or promoter regions of genes that are critical to cell proliferation and inflammation. Unraveling the cell signaling cascades initiated by mineral dusts and pharmacologic inhibition of these events may be important for the control and treatment of mineral-associated occupational diseases.