Ionotropic gamma-aminobutyric acid (GABA) receptors are distributed throughout the nervous systems of many insect species. As with their vertebrate counterparts, GABAA receptors and GABAC receptors, the binding of GABA to ionotropic insect receptors elicits a rapid, transient opening of anion-selective ion channels which is generally inhibitory. Although insect and vertebrate GABA receptors share a number of structural and functional similarities, their pharmacology differs in several aspects. Recent studies of cloned Drosophila melanogaster GABA receptors have clarified the contribution of particular subunits to these differences. Insect ionotropic GABA receptors are also the target of numerous insecticides and an insecticide-resistant form of a Drosophila GABA-receptor subunit has enhanced our understanding of the structure-function relationship of one aspect of pharmacology common to both insect and vertebrate GABA receptors, namely antagonism by the plant-derived toxin picrotoxinin.