Millimolar concentrations of extracellular ATP (ATPo) can induce the permeabilization of plasma membranes of macrophages and other bone marrow-derived cells to low-molecular-weight solutes, a phenomenon that is the hallmark of P2Z purinoceptors. However, patch-clamp and whole cell electrophysiological experiments have so far failed to demonstrate the existence of any ATPo-induced P2Z-associated pores underlying this permeabilization phenomenon. Here, we describe ATPo-induced pores of 409 +/- 33 pS recorded using cell-attached patch-clamp experiments performed in macrophages and J774 cells. These pores are voltage dependent and display several properties of the P2Z-associated permeabilization phenomenon: they are permeable to both large cations and anions, such as tris(hydroxymethyl)aminomethane, N-methyl-D-glucamine, and glutamate; their opening is favored at temperatures higher than 30 degrees C; they are blocked by oxidized ATP and Mg2+; and they can be triggered by 3'-O-(4-benzoylbenzoyl)-ATP but not by UTP or ADP. We conclude that the pores described in this report are associated with the P2Z permeabilization phenomenon.