Interleukin-12 is produced in response to infection with bacteria or parasites or to bacterial constituents such as LPS in monocytes/macrophages and dendritic cells, and also generated by the interaction between activated T cells and antigen-presenting cells via CD40-CD40 ligand (CD40L). So far, transcriptional analyses of p40 have been carried out only using bacterial constituents such as LPS as stimuli. In the present study, we have characterized the transcriptional induction of p40 by CD40 ligation in a human B lymphoblastoid cell line, Daudi, and a human acute monocytic leukemia cell line, THP-1. These cells, stimulated by an agonistic monoclonal antibody against CD40 or by transfection with a CD40L expression vector, secreted p40 and showed enhanced p40 mRNA expression. Sequence analysis of the p40 promoter region identified two potential nuclear factor (NF)-kappaB binding sites conserved between mouse and human. Electrophoretic mobility shift assay revealed that the potential NF-kappaB binding sequence which is located around 120 bp upstream of the transcription initiation site in murine and human p40 genes formed an NF-kappaB complex with nuclear extract from Daudi cells stimulated by CD40 ligation. Moreover, transfection of Daudi cells with the polymerized NF-kappaB binding sequence ligated to a thymidine kinase/chloramphenicol acetyltransferase (CAT) reporter plasmid greatly induced CAT activity, but transfection with the polymerized mutated NF-kappaB binding sequence did not. These results suggest that the NF-kappaB binding site located around 120 bp upstream of the transcription initiation site in murine and human p40 promoter regions could be important for the p40 induction by CD40 ligation via activation of NF-kappaB.