Learning to read requires an awareness that spoken words can be decomposed into the phonologic constituents that the alphabetic characters represent. Such phonologic awareness is characteristically lacking in dyslexic readers who, therefore, have difficulty mapping the alphabetic characters onto the spoken word. To find the location and extent of the functional disruption in neural systems that underlies this impairment, we used functional magnetic resonance imaging to compare brain activation patterns in dyslexic and nonimpaired subjects as they performed tasks that made progressively greater demands on phonologic analysis. Brain activation patterns differed significantly between the groups with dyslexic readers showing relative underactivation in posterior regions (Wernicke's area, the angular gyrus, and striate cortex) and relative overactivation in an anterior region (inferior frontal gyrus). These results support a conclusion that the impairment in dyslexia is phonologic in nature and that these brain activation patterns may provide a neural signature for this impairment.